附近的时空曲率之间的关系,质量越大,对周围的时空产生的弯曲就越大。
当一个物体不受其他力、只在引力的作用下运动时,无论时空是弯曲的还是平坦的,它都只是按照距离最短的路线即“短程线”运动。
如果时空是平坦的,短程线就是直线,这时没有引力,它做的就是匀速直线运动。
如果时空是弯折的,短程线就变成了曲线。
这时在其他观察者看来,这个物体似乎就是在引力的作用下运动——例如地球绕太阳的公转轨道,就是地球在太阳周围的弯曲时空中的短程线。
如果还是没法理解.....再举个简单的例子吧。
太阳好比一个耳根,他往沙发上一坐,就产生一个大坑,那么其他人坐在沙发上时,都会不由自主地被这个大坑陷进去。
在广义相对论中。
不同地方的时空可以具有不同的曲率,所以说时空有了结构。
既然有了结构,自然就可以波动了。
因此根据广义相对论。
引力波应该是一种极其常见的现象,任何不是球对称的物体的加速运动都会产生引力波。
这个概念在理论物理的知名度极广,所以黄昆这次倒是能跟上杨振宁的思路。
随后他眼神微微一动,朝杨振宁问道:
“老杨,不对吧,为什么探测到引力波,就能说是找到了引力子?”
“虽然理论上来说引力波应该具备波粒二象性,但如果从相对论的角度用度规场来对它进行解释,似乎也可以说得通吧?”
“换而言之....二者之间应该没有那种绝对的辅证关系,否则爱因斯坦也不可能支持引力波的存在了。”
波粒二象性。
这个概念最早提出的时候只被用于光子,但后来随着理论发展,已经被推广到了所有的基本粒子。
所以从波的角度进行逆推,一个微观领域的波,同样也应该有对应的微粒。
但是.....
引力波却有些特殊。
早先提及过。
相对论是目前描述引力最完美的一个理论,它只认为宇宙中存在引力场而不存在引力子,引力波的传递依靠的是度规场。
也就是说引力波是张量波,当波穿过某区域时,它会导致空间在垂直方向上收缩和舒张。
这个解释同样能够对引力波进行释意,而且自身可以形成一个良好的闭环生态圈
本章未完,请点击下一页继续阅读!