论由Georgi和Glashow于1974年提出。
当时的标准模型已经被圈定到了规范群为SU(3)×SU(2)×U(1)的规范理论中,而物理学家的普遍愿望是希望底层具有更高对称性,而在低能标下自发破缺得到现有的对称性。
因此问题就变成了怎样的对称群自发破缺完之后,会得到SU(3)×SU(2)×U(1)的数学问题。
所以Georgi和Glashow便从零开始设计,把粒子物理中的强相互作用、电磁相互作用以及弱相互作用统一到一个规范理论模型中,把重子和轻子放在同一个规范群的多重态中,称为SU(5)大一统模型。
这个模型的推导机制和汤川秀树早先的过程差不多,论只需一个耦合参数G5就可以将标准模型中的耦合参数建立相应的联系。
从数学上来看,这个模型确实还是带着一种怎么说呢可以说是很艺术的美。
不过还是当初提过的道理,一个物理模型只在数学上成立是没有用的,它必须要有足够物理证据支撑。
于是在后来的时间里,整个物理学界都在尝试着对它进行验证。
而验证的方式嘛.
自然便是寻找可以衰变的质子了——因为这个模型的核心之一就是质子会衰变。
根据SU(5)大统一模型的计算,质子的衰变周期应该只有10的三十次方年。
霓虹人为了验证这个数据,神冈探测器应运而生。
它们的想法就是在神冈探测器里装几万吨纯水,如果里面有10^33个质子,一年没有发现质子衰变的迹象,就可以把质子半衰期上限提高到10^33年——因为单个粒子的lifetime分布和剩余粒子的数量随时间变化都是指数的。
不过遗憾的是。
神冈实验室花了大量时间进行观测,但最终的结论却是质子寿命的限制应该是>10^34年。
这是一段相当长的时间,因为宇宙的年龄也才只有10^10年的数量级。
也就是说质子寿命是宇宙年龄的一亿亿亿倍以上.
不过原本历史中的霓虹人并不亏,他们在发现找不到质子衰变后,便将注意力放到了中微子研究上,甚至诞生了两个诺奖。
倒是Georgi和Glashow这两人有点悲催,Georgi曾经无奈笑言自己最大的贡献,大概就是留成作业题祸害了后面学量场的同学。
所以在徐
本章未完,请点击下一页继续阅读!