上头的一道公式:
σγ(Ec)=σ0ΓγΓ(E0Ec)121/(1+y2)+2Γ(EcE0)。
徐云见状,暗道了一声果然如此。
大于的这道公式其实不难理解,E0就是质心坐标系中共振峰的能量也就是 Ec+ΔEb与复合核激发态所匹配的能量,Γ为12共振峰值对应的总能量宽度,σ0是最大的截面,Γγ是辐射俘获宽度。
这算是布莱特-维格纳方程的基础变式之一,但更深入的一些物理意义却暂时没被解析出来。
随后徐云想了想,在脑海中过了一遍思路,对大于说道:
“大于,在这个公式的基础上,你先引入量子隧穿,然后想想会发生什么情况?”
“量子隧穿啊”
大于闻言摸了两下下巴,很快开始思考了起来。
量子隧穿。
它是指粒子在经典力学下无法通过能量壁垒,但在量子力学下却有一定概率穿过的现象。
其基本原理是根据量子力学的波粒二象性,粒子可以表现为波的形式,它的波函数可以在势垒外衰减,但是存在一定的概率穿透势垒并进入势垒内部。
在势垒内部,波函数的幅度和相位均受到影响,而在势垒外部,波函数的幅度随距离的增加而指数级衰减,但其相位不变。
当粒子遇到能量势垒时,根据波函数的性质,其波函数会在势垒内部反射和透射。
即使是在能量低于势垒高度的情况下,粒子也有一定概率穿过势垒并出现在势垒另一侧。
这种现象在微观尺度上很常见,如电子穿过材料的能带隙、α射线穿过物体等都是量子隧穿现象,相关概念也在数十年前就被提出了。
几分钟后。
陷入沉思的大于忽然想到了什么,眼前顿时一亮:
“徐云同志,莫非你的意思是”
“由于量子隧穿的存在,所以克服库仑势垒所需的温度比预期的要小,粒子克服静电屏障的概率增大,加上介质下温度下的麦克斯韦分布近似.”
“所以碰撞聚变的粒子动能处在一个狭窄的能量窗口,从而导致聚变截面也会进一步降低?”
徐云重重点了点头:
“没错。”
量子隧穿对核聚变的影响其实是很大的,例如太阳之所以能天然发生聚变反应,原因也是在于量子隧穿的存在。
大于所提到的这个窗口其实就是赫赫有名的伽
本章未完,请点击下一页继续阅读!