这是一种无上的荣耀,比什么上电视被采访、得某某某奖荣耀多了。
二来则是......
超声速轴对称算是四个步骤中,最接近流体力学的一个领域,涉及到很多流体力学的知识。
这个方面徐云不说多精通吧。
至少不用像之前那样昆西附体,全程OvO。
接着很快。
四个小组便每组选择了一间教室,开始了各自的计算推导。
其中钱五师和徐云这组留在了原本的这间教室,毕竟照顾残疾人嘛。
「韩立同志。」
待众人离去后。
钱五师看了眼身边数算组的那位成员,沉吟片刻,对徐云说道说道:
「韩立同志,不知道你对超声速轴对称有了解吗?」
徐云点了点头,开口道:
「唔......大致懂一点,比如说这是您提出的乘波体的三种生成方式之一。」
「其余的两种分别是或超声速二元流场,以及流经任意三维构型的超声速流场。」
「轴对称最小波阻构型可以通过经典最小阻力理论获得,算是最容易生成乘波体的方式。」
钱五师满意的点了点头。
随后他在演算纸上画了个比较简单的图示,说道:
「既然韩立同志你对超声速轴对称并不陌生,那么我们就直接进入正题吧。」
「我们这组在技术侧的目的很简单,就是将最小波阻锥导乘波体和内转式进气道完成一体化设计。」
「而这个设计的核心,就是曲面内锥流场的参数推导。」
说罢。
钱五师又从身边取来了几份文件,对徐云说道
「你看这里,这是我在早些年推导出的乘波体激波面和内锥激波面的部分交线。」
「其中曲线CD是一段捕获型线,通常交点D位于内转式进气道基准流场的中心体上......」
众所周知。
在前体进气道一体化设计方面,眼下这个时期各国的方案有很多种。
比如李维斯特在锥形流场中用流线追踪法设计出进气道的唇口,来近似匹配二维进气道构型。
霓虹的高嶋伸欣则用密切锥方法完成了这一步。
英国的斯达克则采用的是变楔角法——这位其实也挺可惜的,要是英国当年多支持他的研究,英国说不定会先完成乘波前体的研发。
本章未完,请点击下一页继续阅读!