一说,徐云便也很快从先前的惊讶中回过了神。
他连忙从身边拉了把椅子让杨老坐下,随后自己也跟着坐回了位置上。
虽然心中有很多话想说,但眼下显然不是闲聊的好时机。
杨老的语气带着一丝犹豫,看得出来受精力影响,他对于自己的这个想法也没那么笃定。
接着徐云深吸一口气,强迫自己冷静下来,飞快的在纸上演算了起来。
之前徐云计算出的哈密顿算符的本征态方程是这样的:
H^=∑k(c/2(iφk)+ωkcφk/2)
在这里可以很清楚地看到,场量φk的身份是一个广义坐标算符。
这个算符和后续的自旋变量σ有着明显的异常区间φk以及一个i,二者无法通过变换完成契合连接。
但如果把它看成是一个波函数的话
此前提及过。
波函数是复数,复数可以拥有虚部。
粒子轨道的概率方程之所以无法用虚部是因为质量可能为负,但算符化过程却不需要考虑到这事儿。
似乎
真的可行?
想到这里。
徐云下笔的速度顿时快了不少。
“H=∫(c/2π(r,t)12cφttφ)d3r”
“ttφ=Ekφ,Ek=kc+mc^4 ”
“波数 k是波长的倒数即 k=2πλ,这是满足相对论的能量关系的,所以ttφk=ωkφk。”
“同时对于自由场,波数 k相对应的能量密度是均匀的.”
而另一边。
周绍平也在做着相同的计算。
沙沙沙——
看着计算中的徐云和周绍平,杨老的表情也显得有些严肃。
在计算刚开始的那一个小时里,杨老一直都在座位上修养,确实没有精力关注整个过程。
当他醒来的时候,徐云和周绍平已经定下了绕y轴旋转算符的矩阵元的方案。
这个方案的基底之一就是杨老的杨米尔斯场,因此杨老在徐云计算到哈密顿本征态方程的时候,就意识到了他们可能会遇到问题。
虽然不知道徐云为什么不选择更简单的有限角度的矢量转动,但此时即便调头也来不及了,因此杨老便强打起精神,自己开始琢磨起了解决方法。
靠着自身扎实的物理基础,杨老还真想到了一个方案,但把握也就六
本章未完,请点击下一页继续阅读!